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Abstract

The stabifity of the flow of an incompressible, viscous fluid through a pipe of circu-

lar cross-section, curved about a central axis is investigated in a weakly nonlinear

regime. A sinusoidal pressure gradient with zero mean is imposed, acting along the

pipe. A WKBJ perturbation solution is constructed, taking into account the need

for an inner solution in the vicinity of the outer bend, which is obtained by identify-

ing the saddle point of the Taylor number in the complex plane of the cross-sectional

angle co-ordinate. The equation governing the nonlinear evolution of the leading

order vortex amplitude is thus determined. The stability analysis of this flow to ax-

ially periodic disturbances leads to a partial differential system dependent on three

variables, and since the differential operators in this system are periodic in time,

Floquet theory may be applied to reduce this system to a coupled infinite system

of ordinary differential equations, together with homogeneous uncoupled boundary

conditions. The eigenvalues of this system are calculated numerically to predict

a critical Taylor number consistent with the analysis of Papageorgiou (1987). A

discussion of how nonlinear effects alter the linear stability analysis is also given,

and the nature of the instability determined.

1This research was partially supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-19480 while the second author was in residence at the Institute for Computer
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1 Introduction

Our concern is with the stability of the unsteady-viscous flow of an incompressible fluid

in a pipe of circular cross section, itself curved .about a central axis, and subject to a

sinusoidal pressure gradient of zero-mean. In particular, we are interested in the effects of

the nonlinear terms of the Navier-Stokes equations on the development of the disturbance

at the pipe walls. The stability of laminar periodic flows, such as in the problem under

consideration, is often of both mathematical and physical importance. In this case, our

model is of particular relevance to the fluid mechanics of the cardiovascular system, and

in particular the possible links to atheroma. Atheroma is increasingly an important

disease process in middle age, and indeed postmortem results even in young people have

shown evidence of changes to large arterial vessels. In the initial stages fatty streaks -

accumulation of lipid in the tunica intima, occur. Subsequently, raised plaques become

visible on the surface of the arteries. An important feature of atheroma, is that it develops

at preferred sites in the circulatory system. Early signs may be seen in the major central

arteries, and not in the peripheral system, and indeed the later onset of atheroma in

the peripheral circulation might well be due to more advanced lesians in laxger vessels

influencing the blood flow past them and hence the development downstream. The first

sites, tend to be found near junctions, and curves in the arteries. For example, the

posterior wall of the descending thoracic aorta almost always has fatty streaks, whilst

the anterior wall does not. It is thought that one or both of two factors are important in

the preferential distribution. Firstly the structure of the vessel wall varies so that some

sites are more prone to development. And secondly that they are subject to different

influences due to the fluid flow, and this might alter the physiological or biochemical

processes taking place. Clearly we are interested in the later. Experimental evidence

indicates that atheroma is linked with low permeability of the endothelium which inhibits

the efftux of cholesterol. It was initially thought that this low permeability might be due

to damage to the endothelium due to high wall shear stresses, but in fact it has been

shown that such damage increase the rate at which molecules may diffuse into and out of

the plasma. Thus we would expect that less streaks are visible at regions of high shear,

which agrees with observational evidence. For example, in junctions, streaks are observed

on the outer walls, but not on the flow divider, and in curved arteries evidence of atheroma

is more prevalent on the inner bends. For a more detailed account of atherogenesis and

references to experimental work the reader is referred to Caro, Pedley, Schroter & Seed .

Clearly, the model used to study the fluid flow in a curved pipe is far simpler than

the blood flow within the aortic arch. For example, our model does not take into account

the distensibility of the arterial wall. However, although this would be of importance in

determining the local pressure gradient, it does not effect the overall velocity distribution,

since the wavelength of the pulse of fluid driven by the pressure gradient, is far greater

than the distance travelled by a typical fluid element in a single cycle. For example, in

the canine aorta, the pulse wavelength is 3 - 4rn, whilst the distance travelled by the

fluid element is about 10-20cm., hence we can assume that during one period, the cross-

sectional area of the section of the pipe traversed by the fluid is approximately uniform.

Similarly elastic effects can also be neglected provided that there is no discernible change

in the pipe cross-section over a length scale of say lOcrn.

Several problems dealing with the stability of oscillatory flows have been investigated,

both theoretically and experimentally (see Davis (1976)). Periodic laminar flows may be



categorised in two ways. Firstly those which have a non-zero mean velocity, in which case

the disturbance is usually associated with the mean flow and the parameters governing the

stability problem are dependent on the unperturbed flow field. Secondly, periodic flows

may be purely oscillatory, that is have zero mean. In general perturbation methods,

although often applicable to flows of non-zero mean, can not be employed to study

such disturbances and numerical techniques must be relied upon to analyse the stability

problem. The flow field investigated in this paper is purely oscillatory in nature and thus

falls into the latter of these groups.

Since viscosity is to be included, of importance are the stability mechanisms operating

within the Stokes layers formed at the pipe walls, and in particular those associated with

specific types of geometry and local surface behaviour. Since we are investigating the

flow with a curved pipe, clearly centrifugal effects are of importance, and will effect the

development of the instability differently depending on whether the surface is locally

convex or concave.

The experimental and theoretical investigations of the centrifugal instabilities of a

Stokes layer in time-periodic flows by Seminara and Hall (1976). They investigated the

linear stability of the flow induced be a cylinder oscillating harmonically about it's axis

in an unbounded fluid. Within the Stokes layer at the surface of the body, the flow is

shown to be unstable to a Taylor vortex like mode of instability, with the vortices being

periodic in the azimuthal direction for sufficiently high frequencies of oscillation. Also

considered was the possible relevance of their study to the stability of the flow within the

aortic arch. A description of the flow here is complicated, but less important features

of the problem were neglected. Previous work by Lyne (1971), had shown that, in the

high frequency limit, viscous effects are confined to a thin layer at the wall, suggesting

a Stokes layer type flow regime there. Seminara and Hall also investigated the flow

induced by an oscillating curved pipe, and in particular the stability characteristics of

the inner (convex) and the outer (concave) bend. They found that at the inner bend the

disturbance is locally unstable, whilst the outer bend it is locally stable. If, however, the

flow is driven by an oscillating pressure gradient, as is the case for our problem, the stable

and unstable regions change positions. A more detailed experimental treatment of this of

this problem was carried out by Park, Barenghi and Donnelly (1980) and confirmed the

secondary subharmonic destabilisation of the most dangerous mode found by Seminara

and Hall , and an approximate description of this breakdown was given by Hall (1981).

Hall (1984) and Papageorgiou (1987) found that the type of instability mechanism

investigated be Seminara and Hall can also occur in spatially localised positions in more

complex boundary layer flows.

Hall (1984) considered the instability of the two-dimensionM flow induced by a trans-

versely oscillating cylinder, of both elliptical and circular cross-section, in an unbounded

viscous fluid, in both the linear and weakly nonlinear regimes. For frequencies sufficiently

high, the cylinder motion drives an unsteady boundary layer which is unstable to Taylor-

GSrtler vortices, localised to regions where the slip velocity of the potential flow, outside

the boundary layer, is parallel to the motion. For the circular cylinder case in the weakly

nonlinear regime, it was found that the finite amplitude solutions to the evolution equa-

tion for the leading order vortex amplitude, bifurcate subcritically from the eigenvalues

of the linear problem.

In the problems outlined above, the flow field was essentially two-dimensional. How-

ever the problem under consideration in this paper comprises of the basic motion in the



pipe core, together with a smallsecondarytwo-dimensionalflow in the cross-section,and
thus the underlying flow in no longer two-dimensional. The steady problem was first
studied by Dean (1927,1928),who concludedthat the motion dependson a parameter,
K, defined by,

2a

/,'= 2Re ,
where a is the pipe radius, R its radius of curvature about some central axis, and Re the

Reynolds number. Dean's analysis was restricted to small values of K, but subsequently

has been extended numerically to cover moderately large K, and asymptotic boundary

layer theory has been used to obtain results for very large values of this parameter.

Until Lyne (1971), the time-dependent problem had not been studied. He gave a

detailed asymptotic analysis of the fully developed, unperturbed flow in a curved pipe

under the action of a pressure gradient assumed to be sinusoidal in time, and with zero

mean. It is also assumed that _, defined as,

a

*=_,

is small. The flow is found to depend on

_2 =

two parameters,

1 Wea

-_, R_- Rwv'

where u is the kinematic viscosity, W is a typical velocity along the pipe, and _o is the

frequency of oscillation of the basic flow. The parameter e2 is the ratio of the square of

the displacement amplitude of the axial motion, (W2/aw_), to the radius of curvature, R,

and is taken to be small. R_ may be thought of as the Reynolds number of the secondary

flow. Also of importance in the analysis is the parameter fl, given by,

122 /_s '

is also assumed to be small. Physically, t3 represents the ratio of the Stokes layer.

thickness, (2u/w)½, to the pipe radius, a. Since 3 is small, the viscous effects are confined

to a thin layer on the pipe wall, whilst the flow in the pipe core is inviscid. The influence

of the parameter ¢_ on physiological flows was first recognised by Womersley (1955).

The linear stability problem was investigated theoretically by Papageorgiou (1987)

and a more detailed discussion of the results obtained is given in §2.3, since this provides

a basis for the nonlinear problem under consideration here.

Since the Stokes layer is thin, the streamlines adjacent to the wall can be assumed to

be of O(R), and we introduce, T_, the Taylor number for the secondary flow, and defined

by,

T_ = _ Rw u \a--_w/ = 2R_.

Since we are interested in centrifugal effects, we demand that T_ is O(1), and choose R,

to be,

Rs = 2T_ -1,

where T_ = 4T. Note that we may relate the parameters, e, _, T through the formula,

d = ZT,

3



and thus the problem may be reducedto one dependent only on the parameters/3 and

T. Since T_ is much smaller than the Taylor number for the axial flow, we may assume

that the vortices will be aligned with the flow down the pipe and will have characteristic

wavenumbers based on the Stokes layer thickness, (2u/cv)_. In the construction of the

solution two length scales, O(1) and O(3), emerge as being of importance. A possible

approach, taking into account the different scalings in the pipe cross-section, would be to

expand the perturbation quantities in powers of 3 and apply a WKBJ method. Walton

(1975) adopted such a method when investigating the narrow spherical annulus problem.

He anticipated that the critical Taylor number at the equator, above which instabilities

in the flow may occur, was slightly in excess of that for the corresponding cylinder

problem. It was found that the solution becomes singular in the vicinity of the of the

equator, suggesting that an inner expansion is required to smooth out this singularity.

The solutions to the resulting amplitude equation could be expressed in terms of Airy

functions, which have the property that, solutions decaying at infinity exhibit oscillatory

behaviour at minus infinity. Clearly such functions are physically unacceptable, since we

require that solutions to the velocity distribution must be symmetric about the equator.

The problem was resolved by Soward and Jones (1983), who identified the Taylor number

for which inner solutions are well behaved away from the equator.

For our problem, the linear stability analysis of Papageorgiou showed that, as for the

narrow spherical annulus problem, the solution to the amplitude equation was singular, in

this case in the neighbourhood of the outer bend. Again a local inner expansion produced

physically unacceptable results and the method of Soward and Jones (1983), outlined in

§2.2, was employed to identify the correct Taylor number for which the inner solution

is well behaved at +ee. Papageorgiou's investigation also indicated that the instability

sets in first at the outer bend of the pipe, and it was also shown that there exists no

critical Taylor number for the corresponding problem at the inner bend, suggesting that

centrifugal effects are of little importance here.

The procedure for the remainder of this paper is as follows. In the coming section

we formulate the problem at hand, obtaining the governing equations for the flow field

within the Stokes layer , and outline the construction of the inner solution. In §2.3 we

present a brief summary of the derivation of the linear amplitude equation derived by

Papageorgiou . This analysis is then extended in §3 to include the nonlinear terms of

the governing equations and thus the evolution equation for the leading order vortex

amplitude is obtained in this weakly nonlinear regime. Whilst in §4 numerical results

for both the linear and nonlinear problems are presented and discussed. Finally we draw
some conclusions.

2 Formulation of the Problem

2.1 Equations of Motion

Consider the flow of an incompressible viscous fluid in a pipe of circular cross-section

and radius a, which itself is curved in a circle of radius R about a central axis, as

illustrated in figure 2.1 The spatial co-ordinates are taken to be, (r, 0, 6) where r and 0

are polar co-ordinates within the pipe cross-section, and R6 measures the distance along

the pipe. The velocity vector u has components (u, v, w) corresponding to the (r, 0, 6)

co-ordinate system and is assumed to be independent of 6, once the basic flow is fully



Figure 1: The co-ordinatesystem

veloped.

A sinusoidal pressure gradient of the form,

Lmposed on the above flow regime. If we consider the Navier-Stokes equations for the

_tem, and in particular the balance between the viscous work and pressure terms, we

_' that there exists a layer of thickness O(2u/w) on the pipe walls inside which the

cous terms dominate, whilst in the core, we have a potential flow. Similar analysis

the r- and 0-momentum equations suggests that within the viscous layer, u and v

; O(W2/3/Rw) and O(W2/I_) respectively. Thus we introduce the following non-

nensional notation,

-- Wi u y_ __ v W' -- --
u -- W_._, w_/_, W,
p' = P r' _ (2.1)p(_/R)w2, = ;, _" = wt.

bstituting (2.1) into the Navier-Stokes equations yields,

_,+_ (_ +_o- 1_)_ _o_o: ___ _ (_+1___o), _._
v_ + e2 (uv,. + _vvo + _uv) + w2sin0 = -lpo + ½/32o (v_ + !v- _uo) , (2.2b)

1
u_ + !ur + -;re = 0. (2.2d)

" ease in notation, we have ignored the superscripts on the new, non-dimensional

'iables. The system of equations above, (2.2a-d), describes the viscous flow field both

_r the wall of the pipe and in its core. The continuity equation of (2.2d) may be

isfied by introducing a non-dimensional stream function ¢, with u and v given by,

1
u=-_0, v=-_.

r

are primarily interested in the stability of the flow field adjacent to the walls, i.e.

_hin the Stokes layer, which is of thickness, (2v/w)_/3. Thus we introduce the following

tings for r and ¢,

7] = ¢/-1(1 - r), qJ =/3-1¢,



where q and • are the new radial co-ordinate and stream function respectively, inside

the Stokes layer. The solution for the basic flow within this layer, is given by Lyne, as a

series expansion in _,

= _0 + fl_l +/32@2 +.--, (2.3a)

w = wBo -_-flWB1 "_ /32WB2 Jr .... (2.3b)

In (2.3a,b), _i and WBi for i =- 0, 1,2..., are functions of r,r/ and 0 and are found for

fixed values of Rs, the secondary Reynolds number. Expressions for _0, _1 may be found

in Lyne (1971). As was stated in the introduction, we require the asymptotic solution,

as/3 --. 0 and Rs _ oc.

The first two terms in the expansion for ws are given by,

wB0 = sinT-e-'sin(r-r/), (2.4a)
1

WB1 -- 2r/e-nsin(r- 77). (2.4b)

Denoting the basic flow by, UB = (us, vB, wB, pB), we have the following expressions

for us and vs,

uB = /3Uso + /32usa +..., (2.5a)

vB = vs0+/3vB1 +..., (2.5b)

where,
0_i 0qi

usi = --_--, vsi = 0---_-' (2.6)

for i = 0,1 ....

The solutions, (2.5a,b), are strictly valid only in the limit as R, _ oc with/3 held

fixed. However, since R_ has no explicit effect on the equations for _0, Wso etc within the

Stokes layer, but only effects the core flow, where it acts like the conventional Reynolds

number, the solutions above, (2.4a,b), (2.5a,b) are indeed valid representations of the

flow field as/3 _ 0.

Before proceeding with the analysis, we re-write the Navier-Stokes, equations (2.2a-d),

in terms of the Stokes variable, r/and thus obtain the system of equations governing the

flow field within the Stokes layer.

2.2 Construction of the Inner Solution

In the introduction we mentioned that, for both the narrow spherical annulus near the

equator and the curved pipe problem in the vicinity of the outer bend, inner expansions

lead to physically unrealistic results. Such problems can be resolved by the analytic

continuation of the solution into the complex 0-plane. Soward and Jones first used such

a method to resolve the narrow spherical annulus problem, and Papageorgiou modified

their method when consideri ng the linear stability of the flow in a curved pipe. We now

describe this approach when applied to the study undertaken here.

We wish to obtain a dispersion relation for the Taylor number, T of the form,

T = T(k,O,a), (2.7)



where(r is the growth rate, and k, 0 are as previously defined. T is an analytic function

of the complex variables k, 0, a, but we require that, for physical flows, it remain real and

constant for all 0. At a minimum of T, for physicMly acceptable solutions, the following

conditions must hold,

Tk = O, To = 0. (2.8)

In Hall (1984), these conditions are satisfied on the real 0-axis, but clearly complex

values of 0 are also permissible. For the narrow spherical annulus problem, studied by

Walton, Soward and Jones found that, at the minimum value of T on 0 = 0, it was found

that although Tk = 0, T_ did not vanish, and the resulting amplitude equation is of the

Airy-type, which does not lead to physically realistic solutions.

If we are to obtain valid solutions that describe the vortex amplitudes at the critical

Taylor number, we must locate the saddle points of T at which the conditions of (2.8)

are met. Since, for our problem, this does not occur for real 0 we must analytically

continue the solution into the complex 0-plane. Suppose that such a point exists, say

at 0 = 00, then the solution found in the neighbourhood of this point provides both the

inner solution, that removes the singularity at the outer bend, 0 = 0, and also, a set of

asymptotic solutions that match with those valid away from the saddle point, and which

describe the flow field as/3 --, 0, for all real 0.

Due to the symmetry of the problem, we shall be considering only modes that are

symmetric with respect to 0. Thus,

Re (0o) = O, Im (k0) = 0. (2.9)

We can obtain two linearly independent asymptotic solutions to the problem, of a

WKBJ type which take the form,

{ ; }q+=exp +i/3 -1 k(O')dO' qle(O, rI, T)+O(/3). (2.10)

k
• 2

,. o([_ ) ,"

@
.-" _ R., "..

i •

P s (0=0) p+

&

Figure 2: A diagram illustrating the domains into which the complex 0-plane is divided.

The inner solution is valid within the shaded area, a circle of radius 0(/3[).

The stability problem, under consideration, is an eigenvalue problem and has a solu-

tion only if a condition of the following form,

F(k,O,r)=o, (2.11)



is satisfied. The dependenceof F on the variables k, 0, T follows from the search for

neutrally stable solutions, that is solutions with zero growth rate, and by a Fourier

analysis of the solutions in time. The condition that Tk = 0 of (2.8), implies that there

exists a repeated root of (2.11) at 0 = 00. Let this root occur when,

k(')(0o) = k(2)(0o) = k0. (2.12)

Thus, the point P, at which 0 = 00 in the complex 0-plane defines a transition point, in

the neighbourhood of which the WKBJ solutions, (2.10), become identical. The second

condition To = 0 implies that, in the limit as /_ _ 0 the transition points coincide, at

0 = 0o. Hence there exists a pair of anti-Stokes lines dividing the complex plane into four

regions. These are defined by,

i; }Irn @(2)(0') - k_l)(0')) dO' = 0. (2.13)
0

Note that we may also define the corresponding Stokes lines by,

Re{_:(lc(2'(O')-k(l'(o'))dO'} =0. (2.14)

Figure 2-2, is a schematic representation of how the complex 0-plane is divided by the

Stokes and anti-Stokes lines. The exact contours of the principle curves have not been

calculated from (2.13). A more detailed description is given by Soward and Jones (1983).

The reader is also referred to Drazin and Reid (1981).

Since we are concerned with only the symmetric modes, the Stokes line, PS is the

imaginary 0-axis, whilst the anti-Stokes lines, PP_ and PP+ join 0 = 00 to 0 = -01 and

0 = +01 respectively. Hence we can divide the complex 0-plane into the regions R1 --+ R4.

We define ql and q2 to be the asymptotic solutions corresponding to the roots ktl)

and k (2) respectively. Let us assume, that ql be the dominant solution in region R1. That

is the error associated with this solution, is O(_ql), which is small compared with bfql

with in this region. On crossing the anti-Stokes line PP_ into R2, the associated error

changes to O(3q2), which is nolonger small compared with the solution ql, and ql is

said to recessive in R2. In R3, ql remains recessive, and on crossing the anti-Stokes line

PP+ into R4, ql again provides a good approximation to the exact solution. Similarly,

q2 is dominant in regions R2 + R3 and recessive in R1 + R4. For a full description of

phase-integral methods the reader is referred to Heading (1962).

It is, in general, possible to approximate the true solution uniformly along the real

0-axis by,

{ql 0 _>0q= ql--_q2 0<0 '
(2.15 

where _ is a Stokes constant, found by obtaining an inner solution valid for [ 0 - 00 [=

O (8½) and matching this with the outer solution.

WKBJ solutions corresponding to roots of (2.11) other than k/1t and kC2) are not

required, since they are not linked to the transition point at 0 = 00. We require that the

Stokes constant, ( vanishes, in order that ql is the approximate solution along the whole

of the real 0-axis. At S, 0 = 0, the wavenumber and its derivative, with respect to 0,

have the following properties,

Irn(ks) = O, Im(kso) > 0. (2.16)

8



Thus the disturbance takesits maximum value at S. The asymptotic solutions, (2.10)

are valid provided that I 0 - 00 I>> 13½, and control the matching with the inner solutions.

2.3 Review of the Linear Problem

We now present a brief summary of the inner analysis and the results obtained by Papa-

georgiou (1987).

An inner variable O is defined by,

0-0o = 8½0. (2.17)

and note that, O is of O(1).

We also introduce the following notation for the perturbation vector, ct

q= P' Oq' 077 '_'_'fv " (2.18)

The perturbation vector, _t is then expanded in powers of 8½ as,

it = d,(O)ihE + d2(O)612E_½ + d3(O)_t3E_3 +... + c.c., (2.19)

where, E = [iko@/13½] and c.c. denotes the complex conjugate. The Cli, i= 1,2,... are

defined in a similar manner to ct- Having introduced a disturbance, el, into the basic flow

within the Stokes layer, we describe the total flow as,

(4, ,, w,p) = (_B,vs, ws, ps) + _,(_,_,_,_),

where el is a small vanishing parameter, and the subscript, B is, once again, used to

denote quantities of the unperturbed, basic flow field.

It is now a straight forward procedure to substitute the total flow field into the

governing equations and linearise with respect to el. The leading order problem for Ctl
reduces to,

(5o(4,) = O, (2.20)

where Co is the operator defined by,

(_0 = I O- A0 + B O
Oq Or"

In the above, -_o and B are 6x6 matrices not given here.

At 0(8½), _t2 satisfies,

(2.21)

d2 I - -_o_l_ + B = dloM,_ll + Od, M2_h + dlM3_ta. (2.22)

Here Mi, i = 1, 2, 3 are 6x6 matrices not given here. The solution to (2.22) is of the form,

d2cl2 = -idlo¢l_ l) + i@dl6t_ 2) + dl_l_ 3), (2.23)



where _l_i)i= 1,2, 3 areevaluatedusingthe following systemof equations,

1)) = --(  oO(Cll),

= iCeo0( l),

31) = iCko0(qlo). (2.24)

In (2.24), the subscripts,/Co, 00 denote partial differentiation with respect to/Co, 0o respec-

tively, and zero represents evaluation at 0 = 00.

The evolution equation for the leading order amplitude function dl is determined by

imposing a solvability condition on the differential system obtained at 0(/3). The required

condition is,

IMdlee + INOd, o + Ipd, + IQdle + IROdl + IsO2dl = 0, (2.25)

where the coefficients, IN _ IS are double integrals over r/- and T- space, for example,

3 Formulation of the Nonlinear Stability Problem

We now go on to describe how nonlinear effects alter the linear stability analysis outlined

in {}2.3. The terms fundamental, mean and first-harmonic refer to the dependence of

the disturbance on the C-co-ordinate. We recall that the _- dependent amplitude of

the disturbance satisfies (2.25) and that exponentially decaying solutions exist for only

certain values of the Taylor number, T, that is those satisfying the conditions (2.8). We

scale the amplitude of the disturbance in such a way as to introduce non-linear effects

which modify the linear amplitude equation. In order to retain the linear structure of

(2.25), we expand the Taylor number as,

T = Toc +/3Ta, (3.1)

where TOG, is the critical value of To. We first assume that the velocity field perturbation

is O(/3_). At O(_3_*), the fundamental interacts with itself, through the nonlinear terms of

the Navier-Stokes equations, to produce first-harmonic and mean flow correction terms.

These then interact with the fundamental, reinforcing it at O(/33_). Thus for (2.25) to be

modified by nonlinear effects we must choose 6 - 1-- 5"

We now outline the construction of the inner solution following the method of Papa-

georgiou (1987), described briefly in §2.3. We define an O(1), inner variable O by,

0 - 0o = ®/3½, (3.2)

where 0 = 0o is the value of 0, for which the conditions, (2.8) are satisfied, ko and To are

similarly defined. The disturbance quantities, u, v, w and p are then expanded as,

"-EdllUll cos ¢/3_+ [Ed2,u2_cos¢ + E2d2_.u_2cos2¢ + d2ou2o]/3

+ [Ed31u31 cos¢ + E2d32u32cos2¢ + E3d33u33cos3¢ + d3ou3o]/3_ +... + c.c., (3.3a)

_= Edl,vn cos ¢/3½ + [Ed2av21 cos¢ + E2d22v22cos2¢ + d20v_0]/3

10



+ [Ed3,v31cos¢ + E2d32v32cos2¢ + E3d33v33cos3¢ + d30v30] fl_ +... + c.c., (3.3b)

= EdllW11 COS ¢/_½ + [Ed21w21 cos ¢ + E2d22"w22 cos 2¢ + d_ow20]

+ [Ed31w31cos¢ + E_d3_w3_cos2¢ + E3d_w_cos3¢ + d_0w_o]Z_+... + c.c.¢3.3c)

D = Ednp11 cos ¢3½ + [Ed21p2_ cos ¢ + E2d2_p2_ cos 2¢ + d20p2o] Z

+ [Ed3_p_lcos¢ + E2d3_p_cos2¢ + E%_;_ cos3_ + d3op_0]Z_+... + _.c.,(3.3d)

The coefficients in the above expansions depends only on the variables, T, @ and r], and

c.c. denotes the complex conjugate . E is given by,

[%ol
E = exp L-_-½ j. (3.4)

Hence, the total flow may be expressed as,

(u,v,_,p) = (uB,_B,wB,p_)+ (_,_,,_,_), (3.5)

where the subscript B denotes the basic flow. At this point we introduce the perturbation

vector qij, defined as,

[ OYij OWij ]qij = pij, Or] ' Or] ' uij, vii, wij . (3.6)

We proceed by substituting, (3.5) into the governing equations and successively equate

like powers of fl½, so that at O(_½) we find that the fundamental, qn, satisfies the linear

stability problem, with 0, k and T evaluated at the saddle point of T,

Co(q,1) =0, (3.7)

where, C0 is the operator defined by,

eo = I0 _ A0+ B a
or] _

(3.s)

-_0 is the matrix A evaluated at the saddle point of T and B is the 6x6 matrix given

below,

h

0 --lik 0 1k2 q- ikTovBo 0 --2wBocosO

2ik 0 0 -2Tovso,7 k 2 + 2ikTovso 4WBo sin 0

0 0 0 -2TowBo, 0 k 2 + 2ikTovso

0 0 0 0 ik 0

0 1 0 0 0 0

0 0 1 0 0 0

(3.9)

B

0 0 0 -1 0 0

0 0 0 0 -2 0

0 0 0 0 0 -2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(3.10)

11



At 0(/3), the fundermental, q21, satisfies,

d2a(5o (q21) ---- dnMlqllo + dllOM2q11-4-dnoMlq11 (3.11)

where the matrices Mi, i = 1,2 are related to .the operator (5o through the following

equations,

.0(50
M, = z Ok-----_ (3.12a)

0(50
M2 - 00o (3.12b)

And we may obtain a solution to (3.11), by writing,

= .¢ _(3) (3.13)d21q21 -/dnocl_11 ) -[-iOdllCl_] ) + Ullt]21 ,

where _l_0, i = 1,2,3 are to be determined. Substitution of (3.13) into (3.11) and equating

coefficients of d11o, Odai and d11 yields the following equations for _t_11), _l_]) and _t_ ),

(50(_11)) = -(5koo(_11), (3.14a)
(5o(q_i)) = i(5ooo(q11), (3.14b)
(5o((1_3)) = i(sk00((_lno). (3.14c)

In (3.14a,b,c), the subscripts ko, Oo denote partial differentiation with respect to k0,0o

respectively, and the zero subscript denotes evaluation at the saddle point of T, that is

where, 0 = 0o. In addition to the fundamental mode, first harmonic, q22, and mean flow

correction, q2o terms are also generated. After some manipulation, we find that these

maybe expressed as,

In addition, (t22, c12o satisfy,

d22q2_ = d_1_122, (3.15a)

d2oq2o = dlld116t2o. (3.15b)

(50 (_122) = D, (3.16)

(5o ((]2_)= D. (3.17)

In the above equations for q22 and q2o, D and D represent the terms arising form the

interaction of the leading order fundamental with itself.

The amplitude function, dll is obtained be imposing a solvability condition on the
differential system for the fundamental, q31 at 0(/37),

d3_(5o(q3,)= dlloO [M(°)_hl + M(1)cI_I,) ]

-[-dlleO [U(°)Chl + N(1)cl_l) + N(2)_l_]) ]

-_-d11 [V(°)_hl + V(2)_l_]) + V(3)_t_] )]

+dlle [Q(°)Chi + q(1)q_ i) + Q(3)c1_31)]

q-Odll [R(°)Chl-4- R(2)q_ i) "4-R(3)q_31) ]

-_-02dli [S(°)(tl I -_- S(2)(_t_2) ]

-k-dll [d121 [ T(°)(tll, (3.18)
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where, M (0,N (0,p(i), Q(0,R(i), S(i), i = 0, 1,2, 3 are 6x6 matrices not given here, and

T (°), contains the terms arising from the interaction of the leading order fundamental

with the first harmonic and mean flow correction terms. By considering the partial

differential system adjoint to (3.7), we find that.a solution to the above equation exists

if,

dlloelM + OdnoIN + d11Ip + dnoIQ + @dnIn + 02dnIs + dn ] d121 I IT = 0, (3.19)

where IM etc are double integrals over r1- and r-space. For example,

IM = =0 :0

And V satisfies the adjoint differential system,

=o

where Cto is the operator,

Vl = V2 = Vz = 0 at r/ = 0

(3.20)

(3.21)

(3.22)

0 ^ BT_0_0 (3.23)
Cto- _- +AT+ Or"

The amplitude equation (3.19) must be solved subject to the boundary conditions,

dll ---+ 0 as IO I---+ OO. (3.24)

4 Numerical Solution and Results

In this section, we describe the numerical procedure used to solve the leading order

eigenvalue problem subject to boundary conditions of no-slip at the pipe wall and decay

of the disturbance at infinity.

The leading order problem must be solved subject to conditions on k0 and 00. The

eigenrelation is solved for fixed values of k and 0 until the value of To corresponding to

physically acceptable solutions is located.

On the basis of Floquet theory, since the basic flow is periodic in time, we assume

that the disturbances are also periodic and carry out a Fourier expansion in time for the

perturbation quantities. For neutrally stable solutions this takes the form,

Oo

q = G__,qne i'_'_+ c.c, (4.1)
--00

where G is a constant and q= are functions of r/ alone. After some manipulation, the

equations for the leading order problem may be reduced to a pair of coupled partial

differential equations for u and w,

----k2--2_) (_-k2) ull-4-2ikTo(k2vBo+vBonn)ull-2ikTovBoullnn

--4k2 wBOWll cos 00 -- 4ik sin 0o (wBo, wn + WBoWn,) = O,

wn + 2TowBo,Un - 2ikTovsown = O.

(4.2a)

(4.2b)

13



Substitution of (4.1) into the above system would lead to an infinite set of coupled
ordinary differential equationsat successivepowersof ein'. In order to reduce this to a

more tractable system of equations, we set un -- w,_ = 0 for I n [> M. In addition, we

replace oo by rio_ , where r/_ and M are chosen to give the degree of accuracy required.

For large r/, (4.2a-b) reduces to,

( __-ff_2- k2 - 20 ) ( __-ff_- k2) un - likTok2 sinOouaa W 2ikTosinOoulln,

-4k 2 sin TWll COS O0 -- 4ik sin Oosin TWn,7 = O,

(02_k2_20) 1-_T w11+ +-_ikTosinOow11= O.

(4.3a)

(4.35)

The above system, has three independent solutions with the correct behaviour as r/_ oc.

These may be used to integrate (4.2a-b) from r/= r/oo to r/= 0, in this instance using a

fourth order Runge-Kutta scheme with h steps in the interval of integration, to provide

3(2M+ 1) solutions. Combining the independent solutions of the reduced system at r/= 0

we may satisfy all but one of the boundary conditions, and the remaining condition is

met if T(k, O) is an eigenvalue of the system.

0.8

0.6

0.4

0.2

0.0

V%

V-1 _ tmoS

/ "._

/ X

) .... i _....... i.............. i.............. i.............. i ............. ! .....

i ! \ ! ! ! ! !
: \ : : : :

11 i i i i
t : \i ! i i :

.A.........i.............£ ............i..............".............!..............i......

I : : 2" : : :

I I I I I I I

0 2 4 6 8 10 t2

Figure 3: The eigenfunctions u__, u_ -3 and w°l, plotted as a function of r/for the critical

value of To

Our calculations, for M = 6, r/oo = 12.5 and h = 251 gave results of To = 10.7301,

0o = 0.3525i and k0 = 0.5313, comparing favourably with those given by Papageorgiou (1987).
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The eigenfunctionscorrespondingto (4.2a-b)werefound to havethe property that

u11_ = 0 n even,. (4.4a)
n

Wll = 0 n odd. (4.4b)

The functions, u_-) and w°a evaluated at the critical values of ko, 00 and To are illustrated

in figure 3, together with the eigenfunctions for u[-_. The solutions were normalised such

that the first derivative of w_°) was set to 1.0.

The solution to the adjoint solution was calculated in the same manner and used as a

check on the values found above, since the eigenvalues of the adjoint system are identical

with those of (4.2a-b). The functions, V] -1 and V ° of the adjoint system are illustrated

in figure 4. The adjoint eigenfunctions are such that,

Figure 4: The eigenfunctions Vi -1 and V ° for the adjoint problem corresponding to the

critical Taylor number, To

V[ = 0 n even, (4.5a)

V_ = 0 n odd. (4.5b)

In addition solutions for the fundamental, mean flow correction and first harmonic

at 0(/3) were calculated in a similar fashion and hence the integral coefficients of the

amplitude equations (2.25,3.19) could be calculated, in this case using Simpson's rule.

Before proceeding we first simplify the linear amplitude equation, so that the solution

may be expressed in terms of known functions. Using the transformations,

(- _(,,'--r) _)
dl = e e(-_'Y)Z_, (4.6a)
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= O +7, (4.6b)

wemay re-write (2.25)as

H + CpTTI {2) Zl = 0, (4.7)Z;' + _

where

# = + , (4.8a)

Ip a2 ( In IQa2) Is (4.8b)g = A2-72#+_-£M - -7 _M IM ]--A_M'

Ier
CpT -- IM' (4.8c)

In the above transformations, a, A and 3' are suitably chosen constants, depending on the

integral coefficients of (3.19). Since we have assumed in (4.1) that the coefficients of the

Fourier expansion depend only on r/, we find that A and 3' and both zero. The amplitude

function di, and hence, Zt, must decay as, [ O ]_ oc, and hence the solutions to (4.7)

are

where U,_, is the n th parabolic cylinder function, and the corresponding value of T1 is,

T1 = T1, = CpT (4.10)

The functions Ztn (() have n - 1 zeros for _ 6 (-oo, +oc) and depending on the odd/even
1 2

nature of n, are odd or even in 4. All the functions tend to zero like exp(-#_4 /2) and

the least stable mode corresponds to the n = 0 case, when

and
1

TI = Tl c - Iz _ - H
CpT (4.11)

Our calculations showed that Tic = 3.005.

Returning to the nonlinear amplitude equation (3.19), using the transformations,

(4.6a-b), this maybe re-written in the following form,

H + CpTT1 )z" + _ -_ - ¢ z = -c_z Iz I_F (4), (4.12)

where

F(() = I e-_e_(_-')_ 12, (4.13a)

IT

CT- IM' (4.13b)
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Figure 5: The numerically calculated bifurcating solution of (4.12)

and H, #, CPT are given by (4.8a-c).

If we expand Z and T1 in terms of some small parameter e,

1

Z -._ ggZl-._£_Z3-t-... ,

TI = Tc + eTp + ...,

and substitute these into (4.12) then we find at leading order, Z1 satisfies the linear

amplitude equation (4.7) and hence,

Z 1 = CZI,

where ¢ is an arbitrary constant determined at higher order. In addition, Tc = Tic,

where Tic is given be (4.11). At O(e_), we find that Z3 satisfies,

H + CpTTc _ (2) Z3 = --CTOZI I CZ_ 12 F (() - CpTTpCZ+ (4.14).

In order for solutions to the above equation to exist, a solvability condition must be

satisfied. By this we mean that the right hand side of the differential equation must be

orthogonat to the solution of the adjoint problem to (4.7). It should be noted that (4.7)

is self-adjoint. The required condition is,

1¢ 12- CPT J1
CT J2 TP (4.15)
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where Ji, i = 1, 2 are given below,

J1 = /__o

If we assume that I T1 - Tc I<< 1 then (4.15) maybe be written in the form,

I z I_~ cpr (T, - Tc) l Z_ I_ g'E (4.16)

0.05 .......................................... i ...................... .........................

0.04 7 .............. ,........................

0.05

N

0.02

0.01

0,00

--10 --5 0 5 10

Figure 6: Comparison of solutions for TI = 2.9. The solid line represents the solution the

full problem, (4.12) and the o symbol the approximate solution, (4.14)

Since CPT/CT was found to be positive, finite amplitude solutions of (4.12) only

exist locally near 7'1 = Tic for T1 < Tic. Thus the solutions to (4.12) will bifurcate

subcritically from the eigenvalues of the linear problem. The subcritical nature of the

bifurcation was confirmed by numerically integrating (4.12) using a shooting procedure.

We note that, since the differential operator in (4.12) is even in (, and F (() is also

an even function for _ = 0 thus we can expect that the solution Z(() is either even

or odd in (, depending on the conditions applied, with even solutions corresponding to

Z'(O) = 0 and odd solutions to, Z'(0 +) = Z'(0-), and in this case the former condition

was applied. The results are shown in figure 5, where we have plotted the amplitude of

the first mode, evaluated at ( = 0, as a function of/1. It is possible that higher-order
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Figure 7: Comparison of l Z(0) 12from (4.12)- solid line, (4.14) - small dashed line and

(4.16) - dashed line

nonlinear effects may reverse this result, producing supercritical equilibrium solutions,

however higher-order calculations would be required in order to substantiate/disprove

this conjecture.

Subcritical solutions are known to be unstable, and by allowing the amplitude function

Z to be dependent on some slow time variable this may be shown. Thus the fully nonlinear

problem must be solved numerically in order to find out how the flow develops.

In figure 6 we compare the results obtained from numerically integrating (4.12) - solid

line, with those from the expansion procedure carried out in the neighbourhood of Tic.

We took, T1 = 2.9, and as illustrated the results were found to be almost identical.

The results obtained by numerically integrating the nonlinear amplitude equation,

(4.12) - solid line, are compared with those obtained from the expansion about Tic, -

small dashed line, and the approximate value for I Z 12from (4.16)- dashed line, in figure

7. As expected the results from the two approximate methods are in good agreement

with those from the numerical integration in the neighbourhood of Tic.

5 Conclusions

We have obtained the equation governing the nonlinear evolution of the leading-order

vortex amplitude function dll(@). As expected, the linear terms of this equation are of

the same form as those of the equivalent equation found from the linear stability analysis.
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Indeed,wewould alsoexpectthat the coefficientsof the linear terms,IM, IN, IF, IQ, In, Is,
will be identical to thosefor the linearevolutionequation, found by Papageorgiou(1987),
taking account of the differencesin notation.

The results of our numerical calculationspredict that the instability is subcritical
in nature, and thus we presumethat closeto the critical Taylor number, sufficiently
large perturbations to the basicstate will grow. Thesedisturbancesmight tend to some
equilibrium, due to stabilisation by higher-ordernonlinear effects,and thus someform
of steady state reached. Alternatively, even if no stabilisation takes place, due to the
localisednature of the instability, wemight expect that someperiodicity along the pipe
exists. For example, Tollmien-Schlichtingwavesare subcritical in nature, but can be
observedin parallel or nearly parallel flows. The fully nonlinearproblem would needto
be solved numerically in order to investigatethe subcritical nature of the bifurcation,
and find the flow into which the disturbanceevolves.

In the introduction, wementionedthe relevanceof the model to the study of the fluid
mechanicsof blood flow in large arteries and in particular the aortic arch. Typically for
the canine cardiovascularsystem, the ascendingaorta is 1.5cmin diameter, the mean
velocity is approximately, 20cms-1, Rs ,_ 4000, fl _ 0.1, and _ has a value of about 0.2.

Our analysis is not inconsistent with these values, assuming that the mechanics of the

blood flow are not significantly altered in the limit $ _ 0.

However, one important feature of physiological flows is that in general the pressure

gradient has a non-zero mean component, and thus the Dean number, D must be included

as a parameter in the problem. For the canine aorta this has a value of _ 2000. The

problem under consideration here, becomes physiologically viable if we consider the case,

/3 ---. 0, D < Rs, (see Papageorgiou ). In this case, the flow-field within the Stokes layer,

to leading order, is described by Lyne's analysis and the stability of the solution is as
described here.
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